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Abstract. Restricted solid-on-solid (RSOS) models with finite-distance hoppings are studied.
A randomly dropped particle is allowed to hop to find the nearest site satisfying the RSOS
condition within a finite hopping distancelc. If the particle can find such a site within the
distancelc, then the growth is permitted at that site. If the particle cannot find the site within
the distancelc, the particle is abandoned and the new particle is dropped. It is found that in
the substrate dimensionsds = 1 and 2 the universality of such models crosses over from the
Kadar–Parisi–Zhang (KPZ) class (lc = 0) to the conserved-KPZ class (lc = ∞) at finite lc.
The tilt-dependent growth velocity and the surface current are also studied to understand the
crossover physically.

Recently, there has been much interest in the non-trivial scaling behaviour of the
kinetic surface-roughening phenomena [1], because of the possible connection to interface
roughening in the growth phenomena. The main quantities of interest in these studies are
the exponentsα, β, andz which characterize the scaling of the widthW . The widthW of
the system sizeL is defined as the root mean square of the surface heights and is expected
to satisfy the scaling form [1]

W(t) = Lαf (t/Lz) (1)

whereW(t) ∼ tβ with β = α/z for t/Lz � 1 and whereW(t) ∼ Lα for t/Lz � 1. Since
Kadar–Parisi–Zhang (KPZ) [2] suggested a nonlinear continuum equation, which the growth
models such as ballistic deposition [3–5] and Eden growth [6–8] follow rather well, many
models [1] have been suggested to understand the physics related to the KPZ equation.
The restricted solid-on-solid (RSOS) model [9] in which the height difference between
the neighbouring columns is usually restricted to zero or 1 is one of the famous models
which apparently suppress the corrections to the scaling and lead to the faster convergence
to the KPZ behaviour. The common characteristic feature of the models [3–9] which
belong to the so-called KPZ universality class is that the models describenon-conservative
growth processes, i.e. the basic mechanisms for interface roughening need not conserve the
number of the dropped particles. More recently, models which are believed to be related
to real molecular beam epitaxial (MBE) growth [10–16] have extensively been studied.
The characteristic feature of these models is that they describe theconservativegrowth
processes in which the number of particles is conserved after being deposited. Recently, we
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have also studied a conservative model with a RSOS condition [17–19]. The essence of this
‘conserved RSOS (CRSOS) model’ is very similar to the simple RSOS model [9] except
that no desorption occurs. To satisfy not only conservation of the number of particles but
also the constraint on the difference between the neighbouring heights (or RSOS condition),
the dropped particles are permitted to hop (or diffuse) to find a site at which the RSOS
condition is satisfied [17, 18]. Extensive studies on various physical properties, such as the
surface width and the tilt-dependent surface current of the CRSOS model in the substrate
dimensionds = 1 [18] and the scaling properties inds = 1, 2, 3, 4 [17–19], have shown
that the CRSOS model follows the conserved KPZ equation [10, 13]

∂h(x, t)

∂t
= −ν4∇4h(x, t)+ λ∇2(∇h)2+ η(x, t) (2)

where

〈η(x, t)η(x ′, t ′)〉 = 2Dδ(x − x ′)δ(t − t ′). (3)

In the CRSOS model, there may be long distance hopping of a dropped particle to find
a site where the RSOS condition is satisfied. If the chance for a particle to hop a long
distance (or a distance comparable to the size of a substrate) is high, then our model should
have non-local processes. Therefore, we have measured the probability distributionP(l)

as a function ofl where l is the hopping distance between the dropped site (the selected
site) and the deposited site (the nearest site which satisfies the RSOS condition) [18]. If the
dropped site satisfies the RSOS condition, the particle does not move andl = 0. We have
found [18] that inds = 1, 2 the measuredP(l) are fitted well to the exponential distribution
P(l) = A exp(−l/ lr ) except at the pointl = 0. Average hopping distances〈l〉(≡∑l lP (l))

have also been measured and it has been found that〈l〉 = 0.91 in ds = 1 and〈l〉 = 0.62 in
ds = 2 [18]. Since the measuredP(l) satisfy an exponential decay quite well and〈l〉 < 1,
there hardly exist any non-local processes in the CRSOS model.

The simple RSOS model [9] in which no hopping is allowed belongs to the KPZ
universality class, whereas the CRSOS model [17, 18] which allows hoppings (but with
〈l〉 < 1) belongs to the conserved KPZ universality class described by equation (2) [10, 13].
Therefore, it is natural that one should ask what universality classes the RSOS models with
finite-distance hoppings belong to. The growth rule of the RSOS model with finite-distance
hoppings can be defined with the following growth rules: (I) a sitex is selected randomly
on a ds-dimensional substrate; (II) if the RSOS condition on the neighbouring columns
|δh| 6 1 is obeyed after a particle is deposited atx, then growth is allowed by increasing
the heighth(x)→ h(x) + 1; (III) if the RSOS condition is not obeyed at the positionx,
the dropped particle is allowed to hop to the nearest site tox within a distancelc from x,
where the condition is satisfied and growth is allowed at that site; if there is no such site
within a cut-off distancelc, then the particle is abandoned and a new particle is dropped.
The model withlc = 0 is then the same as the simple RSOS model [9], and the model with
lc = ∞ (or lc ' substrate size) reproduces the CRSOS model. Hence the model with
finite lc is expected to be described by the continuum equation

∂h(x, t)

∂t
= ν2∇2h(x, t)+ λK(∇h)2− ν4∇4h(x, t)+ λ∇2(∇h)2+ η(x, t). (4)

The model (lc = 0) belongs to the KPZ class and thus follows equation (4) withν4 = 0
andλ = 0 [9], whereas the model (lc = ∞) [17, 18] follows equation (4) withν2 = 0 and
λK = 0. Since the average hopping distances of the CRSOS model inds = 1, 2 are less
than 1, the universality class of the models withlc is expected to cross over from the KPZ
class to the conserved KPZ class at finitelc. Recently, Vvedenskyet al [15] have derived
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Figure 1. The surface widthW of the models with variouslc on the one-dimensional substrate
of sizeL = 256 as a function of time on a log–log plot.

Figure 2. The exponentα in ds = 1 as a function oflc.

equation (4) analytically for the surface of a single crystal that grows under the typical (or
real) epitaxial growth condition. They have taken account of atomic deposition, desorption,
and the diffusion (or hopping) on the surface. Vvedenskyet al [15] have also shown that
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ν2 = 0 andλK = 0 if the desorption and the processes of the downward bias are absent. As
we shall see,ν2 andλK , which are apparently non-zero for the model withlc = 0, become
rapidly negligible aslc increases. We believe that our model with finite-distance hoppings
should be a nice stochastic model which follows equation (4) and moreover by controlling
lc we can control the coefficientsν2, ν4, λK , andλ. The first purpose of the present letter is
thus to show that the models have a phase transition from the KPZ class to the conserved
KPZ class at the finitelc. The second is to show how the coefficientsν2, ν4, λK , andλ vary
as lc varies.

The simulation begins with a flat substrate and the periodic condition is used. The
simulation results forW(t) for the models with variouslc in ds = 1 are displayed in
figures 1 and 2. In figure 1,W(t) on the substrate of sizeL = 256 are displayed. For the
early timet (t � Lz),W(t) of the models with variouslc all satisfy the relationW(t) ' tβ
(β ∼ 0.32) rather well. Since theβ values for both the RSOS model [9] and the CRSOS
model [17, 18] are close to 1/3, the same early time behaviour for the models with various
lc in figure 1 is the expected result. In contrast, the values ofW(t) for various lc in the
steady-state regime (ort � Lz) are expected to have some values between that forlc = 0
and that forlc = ∞ as one can see from figure 1. We have obtainedW(t) in the steady-state
regime on the substrates withL = 64, 128, 256, 360, 512. By use of the relationW ' Lα
in the steady-state regime, we have obtained the roughness exponentα for each model with
various lc. The result forα is displayed in figure 2. Theα values for the models with
lc 6 2 are nearly equal to 1/2 which is the same as that of the simple RSOS model [9]. For
lc > 3, α increases aslc increases and increases abruptly betweenlc = 5 and lc = 6. For
lc > 8, α becomes nearly equal to 0.9 which is close to that for the CRSOS model [17, 18].
Considering these results for the exponentα and the effects of the finite size simultaneously,
the transition from the KPZ regime to the conserved KPZ regime occurs aroundlc ' 5–6
in ds = 1.

The simulation results inds = 2 are displayed in figures 3 and 4. In figure 3, the
early time dependence ofW(t) on the substrate sizeL × L = 256× 256 is displayed. In
ds = 2, β for lc = 0 (RSOS model) [9] is close to 1/4 andβ for lc = ∞ (CRSOS) model
is close to 0.19 [19]. As one can see from figure 3, the time dependence ofW(t) for lc > 2
is almost the same as that for the CRSOS model. In contrast,W(t) for lc = 0 is quite
different from that forlc > 2. This result suggests that inds = 2 the crossover from the
KPZ class to the conserved KPZ class occurs nearlc = 2. In figure 4 we have displayed
the measured exponentsα andβ values for the variouslc. Here the exponentsα values are
obtained from the measuredW(t) for the steady-state regime on the substrate sizes with
L = 22, 32, 45, 64, and theβ values are obtained from the data similar to those in figure 4.
With increasinglc, the values ofα andβ first decrease from the known values forlc = 0
(α = 2/5 andβ = 1/4) to 0.3 and 0.15 forlc = 1. In contrast, the values ofα and β
increase forlc > 2 and become nearly the same as 0.6 and 0.18 forlc > 3. 0.6 and 0.18
are very close to the values ofα andβ for the CRSOS model [19]. The result shown in
figure 4 also suggests that the crossover from the KPZ class to the conserved KPZ class
occurs atlc ' 2–3 in ds = 2. This result inds = 2 also indicates that even the hoppings
of small distance (l ' 2–3) can make the universality of the surface roughening change
drastically in higher dimensions (ords > 2).

To understand the crossover phenomena with finitelc from different points of view,
we have measured the coefficient of the KPZ nonlinear termλK and the surface tension
coefficientν2 of equation (4) for the RSOS models with the finitelc. For the measurement
of λK we have used the method which was suggested by Krug and Spohn [20] and Kim
[21]. If one measures the tilt-dependent growth velocityv(m) on the tilted substrate with
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the average slopem, thenv(m) satisfies the relation

v(m) = v(0)+ λKm2 (5)

for smallm. We have measuredλK by using equation (5). The results of the measurements
of λK in ds = 1 are displayed in figure 5. For the models withlc 6 4, λK is negative
finite and thus these models should belong to the KPZ class, because the most relevant
term in equation (4) is the KPZ nonlinear termλK |∇h|2. However, the absolute value of
λK abruptly decreases by more than 100 times betweenlc = 5 andlc = 6. Moreover, the
absolute value ofλK is less than 0.001 forlc = 7. Considering finite-size effects and the
results in figure 5 simultaneously,λK should become nearly zero forlc > 5. We have also
measuredν2. The method which we have used for the measurement ofν2 is that suggested
by Krug et al [22]. To determine the surface tension coefficientν2, the surface currentJ (m)
is measured as a function ofm. The surface current is measured by counting the number
of jumps in between the uphill direction and the downhill direction. If the net current is in
the uphill direction,J (m) is positive. ν2 can be given byν2 = −∂J (m = 0)/∂m. In the
measurement ofJ (m) we do not consider the length of the jump, instead we just count the
number of particles which hop via a downhill (or uphill) jump. The currents are taken for
the system sizeL = 512 in ds = 1. It has been found that for models withlc > 1 J (m) is
almost independent ofm and the measured values for|J (m)| are very small (or less than
10−4) and similar to those for the CRSOS model [18]. This means that models withlc 6= 0
have no effective surface tension (orν2 = 0) or no effective downward bias. From the
measurements ofλK and ν2 in ds = 1, it is concluded that the transition from the KPZ
regime to the conserved KPZ regime occurs atlc ' 5 in ds = 1, which is also consistent
with the conclusion from the measurement of the exponentα in figure 2.

In ds = 2, we have measured the currentJ for the models withlc in the simulations

Figure 3. The early time dependence ofW(t) of the models with variouslc on the two-
dimensional substrate of sizeL = 256× 256 as a function of time on a log–log plot.
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Figure 4. Exponentsα andβ in ds = 2 as a function oflc.

Figure 5. λK of the KPZ nonlinear term inds = 1 as a function oflc.

beginning with the flat substrate. We have found that inds = 2 the model withlc = 1
has net negative currents or downward biases in early times (t � Lz). This result tells
us that the effects of the downward bias [15] or the Edward–Wilkinson term (ν2∇2h) [23]
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remain for a considerable amount of time in the initial growing stage of the model with
lc = 1 and that this effect should make the values ofα andβ for lc = 1 smaller than the
corresponding values forlc 6= 1 (see figure 4). In contrast, we have not found the effects
of such downward biases for the models withlc > 2.

There have been several growth models in which the phase transition occurs [21, 24–26].
In these models the transitions are mainly those from the KPZ class to the Edward–Wilkinson
class [23]. In contrast, our model should be one of the models which manifests a phase
transition from the KPZ regime to the conserved KPZ regime or to the MBE regime.

This work has been supported in part by the KOSEF (951-0206-003-2), the Basic Science
Research Programs, Ministry of Education of Korea 1996, project No BSRI-96-2443, and
by the KOSEF through the SRC program of SNU-CTP.
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